Linear Dimension Reduction for Multiple Heteroscedastic Multivariate Normal Populations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-iterative Heteroscedastic Linear Dimension Reduction for Two-Class Data

Linear discriminant analysis (LDA) is a traditional solution to the linear dimension reduction (LDR) problem, which is based on the maximization of the between-class scatter over the within-class scatter. This solution is incapable of dealing with heteroscedastic data in a proper way, because of the implicit assumption that the covariance matrices for all the classes are equal. Hence, discrimin...

متن کامل

Dimension Reduction for Multivariate Emulation

This article discusses the dimensionality reduction methods investigated during the Predicting Uncertainty in Complex Models (PUCM) Research Playground. We provide an overview of the theory of the methods examined and apply them to the output of a climate model. Our goal is to examine dimensionality reduction methods within the wider context of multivariate emulation as a way of handling model ...

متن کامل

Dimension reduction and coefficient estimation in multivariate linear regression

We introduce a general formulation for dimension reduction and coefficient estimation in the multivariate linear model. We argue that many of the existing methods that are commonly used in practice can be formulated in this framework and have various restrictions. We continue to propose a new method that is more flexible and more generally applicable. The method proposed can be formulated as a ...

متن کامل

Non-Iterative Heteroscedastic Linear Dimension Reduction for Two-Class Data From Fisher to Chernoff

Linear discriminant analysis (LDA) is a traditional solution to the linear dimension reduction (LDR) problem, which is based on the maximization of the between-class scatter over the within-class scatter. This solution is incapable of dealing with heteroscedastic data in a proper way, because of the implicit assumption that the covariance matrices for all the classes are equal. Hence, discrimin...

متن کامل

Shrinkage estimates for multi-level heteroscedastic hierarchical normal linear models

Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparamet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Statistics

سال: 2015

ISSN: 2161-718X,2161-7198

DOI: 10.4236/ojs.2015.54033